If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+365x-850=0
a = 17; b = 365; c = -850;
Δ = b2-4ac
Δ = 3652-4·17·(-850)
Δ = 191025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{191025}=\sqrt{225*849}=\sqrt{225}*\sqrt{849}=15\sqrt{849}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(365)-15\sqrt{849}}{2*17}=\frac{-365-15\sqrt{849}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(365)+15\sqrt{849}}{2*17}=\frac{-365+15\sqrt{849}}{34} $
| 7m-12=2m+18 | | 5(4n-7)-1=4(6n+6) | | 3(2a+6)-4a=6a-2 | | -5(-4x+3)-x=3(x-2)-7 | | 1.2+1=0.4(0.3x+1) | | 10−8k+6=−10k+ | | 2y+60+90+5=180 | | 80=4v+16 | | 2x+6x-10=38 | | 3c-2=-3c-8 | | A=4n+27 | | 2z+1=19* | | (180-x)-x=30 | | 3.2(n+2)=9.6 | | 16u-4=-20 | | 8=6h+6/3 | | 25+.4x=-3 | | 4x-14=2(x+1) | | z-7=-10 | | 3(u+1)-2=7 | | 8g-13=3 | | X^2+1x+188=0 | | 7y+8=-2y+80 | | 0=16+.75x | | 2x²-3=20 | | 6a+10=4+8a | | 10x+3=7x-4=19 | | d/2+18=16 | | 5x-71=79 | | 10x^2-38x+28=0 | | 8x÷4=100 | | 2x+3x(x-1)=27 |